z-logo
Premium
Three‐dimensional simulation of thermoforming process and its comparison with experiments
Author(s) -
Nam Gi Joon,
Lee Jae Wook,
Ahn Kyung Hyun
Publication year - 2000
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.11355
Subject(s) - thermoforming , materials science , hyperelastic material , composite material , isothermal process , finite element method , forming processes , computer simulation , mechanics , structural engineering , engineering , thermodynamics , physics
Three‐dimensional solid element analysis and the membrane approximated analysis employing the hyperelastic material model have been developed for the simulation of the thermoforming process. For the free inflation test of a rectangular sheet, these two analyses showed the same behavior when the sheet thickness was thin, and they deviated more and more as the sheet thickness increased. In this research, we made a guideline for the accuracy range of sheet thickness for the membrane analysis to be applied. The simulations were performed for both vacuum forming and the plug‐assisted forming process. To compare the simulation results with experiments, laboratory scale thermoforming experiments were performed with acrylonitrile‐butadiene‐styrene (ABS). The material parameters of the hyperelastic model were obtained by uni‐directional hot tensile tests, and the thickness distributions obtained from experiments corresponded well with the numerical results. Non‐isothermal analysis that took into account the sheet, temperature distribution measured directly from the experiments was also performed. It was found that the non‐isothermal analysis greatly improved the predictability of the numerical simulation, and it is important to take into account the sheet temperature distribution for a more reliable simulation of the thermoforming process.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here