z-logo
Premium
Mixed matrix membrane materials with glassy polymers. Part 2
Author(s) -
Mahajan Rajiv,
Koros William J.
Publication year - 2002
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.11042
Subject(s) - materials science , polymer , membrane , interphase , flexibility (engineering) , gas separation , matrix (chemical analysis) , composite material , chemical engineering , nanotechnology , chemistry , biochemistry , statistics , mathematics , biology , engineering , genetics
Analysis presented in Part 1 of this paper indicated the importance of optimization of the transport properties of the interfacial region to achieve ideal mixed matrix materials. This insight is used in this paper to guide mixed matrix material formation with more conventional gas separation polymers. Conventional gas separation materials are rigid, and, as seen earlier, lead to the formation of an undesirable interphase under conventional casting techniques. We show in this study that if flexibility can be maintained during membrane formation with a polymer that interacts favorably with the sieve, successful mixed matrix materials result, even with rigid polymeric materials. Flexibility during membrane formation can be achieved by formation of films at temperatures close to the glass transition temperature of the polymer. Moreover, combination of chemical coupling and flexibility during membrane formation produces even more significant improvements in membrane performance. This approach leads to the formation of mixed matrix material with transport properties exceeding the upper bound currently achieved by conventional membrane materials. Another approach to form successful mixed matrix materials involves tailoring the interface by use of integral chemical linkages that are intrinsically part of the chain backbone. Such linkages appear to tighten the interface sufficiently to prevent “nonselective leakage” along the interface. This approach is demonstrated by directly bonding a reactive polymer onto the sieve surface under proper processing conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here