z-logo
Premium
Polyimide and nylon 6 blend film: Preparation, characterization and thermal behavior
Author(s) -
Niyogi Sobhan,
Maiti Sukumar,
Adhikari Basudam
Publication year - 2002
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10952
Subject(s) - materials science , crystallinity , polyimide , thermal stability , isothermal process , inert gas , polymer chemistry , chemical engineering , amorphous solid , nylon 6 , composite material , polymer , organic chemistry , chemistry , physics , layer (electronics) , engineering , thermodynamics
A polyimide blend system has been prepared from a base polyimide of BTDAODA by adding ε‐caprolactam at the poly(amic acid) stage where ε‐caprolactam undergoes polymerization to form nylon 6 during the thermal cyclodehydration of poly(amic acid). The blend has been characterized by elemental analysis. IR, 13 C CPMAS NMR, XRD and simple chemical methods. The thermal analysis study (TGA and DTA) shows that the stability of the blend systems is more in the lower temperature region (up to 300°C) in comparison to the control polyimide system. The isothermal study at 400°C in inert atmosphere shows that the blend system is equally stable but the isothermal study in air at 400°C shows that the thermooxidative stability of the blend films (except BB 4) is higher. Also, isothermal study in air at 500°C shows more than 90% weight loss for all the films within 3 h, but in an inert atmosphere, the blend films show lower weight loss compared to the control film. Although the XRD pattern of all the blend and control films shows an amorphous character, the films developed some crystallinity when treated with boiling NMP where the blend films developed higher crystallinity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here