Premium
Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites
Author(s) -
Chen GuoHua,
Wu DaJun,
Weng WenGui,
Yan WenLi
Publication year - 2001
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10909
Subject(s) - materials science , graphite , composite material , nanocomposite , composite number , polymer , intercalation (chemistry) , methyl methacrylate , in situ polymerization , polymerization , conductivity , dispersion (optics) , organic chemistry , chemistry , physics , optics
Abstract Poly(methyl methacrylate)(PMMA)/expanded graphite composite has been made via an in situ polymerization of methyl methacrylate(MMA) in the presence of expanded graphite obtained by rapid heating of the graphite intercalation compound (GIC). The composite was then blended with poly(vinyl chloride) (PVC) to form an electrically conducting composite. SEM, TEM and XRD showed that the graphite had been dispersed throughout the polymer matrix in the form of nanosheets with thicknesses of about 20 nm. The resulting composite showed excellent electrical conductivity despite a low concentration of graphite. The transition from an electrical insulator to an electrical semiconductor for the composite occurred when the graphite content was 3.5 wt%, much lower than that of conventional conducting polymer composites. Conductivity reached a maximum of 10 −4 s/cm at a graphite concentration of 5.0 wt%. This improvement of conductivity could be attributed to the high aspect ration (width‐to‐thickness) of the graphite nanosheets dispersed in the polymer matrix.