Premium
Effect of molecular weight on crystallization and melting of poly(trimethylene terephthalate). 1: Isothermal and dynamic crystallization
Author(s) -
Wang XueSong,
Yain Deyue,
Tian GuoHua,
Li XinGui
Publication year - 2001
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10863
Subject(s) - crystallization , materials science , nucleation , isothermal process , differential scanning calorimetry , avrami equation , thermodynamics , exponent , crystallization of polymers , polymer chemistry , crystallography , chemistry , linguistics , philosophy , physics
The crystallization behavior of poly(trimethylene terephthalate) as a function of molecular weight was investigated under isothermal and dynamic cooling conditions using a differential scanning calorimeter (DSC) and polarized light optical microscopy (POM). THe overall rate of bulk crystallization increased with molecular weight. An Avrami analysis of the isothermal crystallization kinetics indicated that the crystallization rate constant increased with increasing molecular weight. The Avrami exponent, n , approached 2 and was nearly independent of both molecular weight and temperature. The modified Avrami analysis developed by Jeziorny and Ozawa was applied to the dynamic crystallization data. At the same cooling rate, higher molecular weight resulted in a narrower crystallization peak, higher onset crystallization temperature, and larger rate constant (Z t ) 1/n . Higher molecular weight resulted in larger cooling function of dynamic crystallization K ( T ) and lower Ozawa exponent m. For dynamic crystallization, the average value of the Avrami exponent varied from 3.4 to 3.8 and the average value of the Ozawa exponent changed from 2.3 to 2.6 as the number‐average molecular weight changed from 13,000 to 67,000. Morphology studies indicated that both the isothermal crystallization and the dynamic crystallization of PTT from the melt were thermal nucleation processes, and for a fixed temperature between 190°C and 210°C, the nucleation density increased with increasing the molecular weight.