z-logo
Premium
Reactive blending of functionalized acrylic rubbers and epoxy resins
Author(s) -
Dispenza C.,
Spadaro G.,
Carter J. T.,
McGrail P. T.
Publication year - 2001
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10847
Subject(s) - epoxy , materials science , curing (chemistry) , composite material , natural rubber , acrylonitrile , miscibility , solvent , nitrile rubber , polymer chemistry , polymer , copolymer , organic chemistry , chemistry
A high molecular weight acrylonitrile/butadiene/methacrylic acid (Nipol 1472) rubber is chosen to control processability and mechanical properties of a TGDDM (tetra glycidyl diphenyl methane) based epoxy resin formulation for aerospace composite applications. The physical blend of rubber and epoxy resin, achieved by dissolution of all the components in a common solvent, forms a heterogeneous system after solvent removal and presents coarse phase separation during cure that impairs any practical relevance of this material. A marked improvement of rubberepoxy miscibility is achieved by reactive blending (‘pre‐reaction’) the epoxy oligomer with the functional groups present in the rubber. The epoxy‐rubber ‘adduct’ so obtained appears as a homogeneous system at room temperature and also after compounding with the curing agent. Depending on the nature and extent of interactions developed between the rubber and the epoxy resin during ‘pre‐reaction,’ materials with different resin flow characteristics, distinctive morphologies and mechanical properties after curing were obtained. The effect of ‘pre‐reaction’ on the resin cure reaction kinetics has been also investigated.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here