Premium
Reaction injection molding of polyurethane foam for improved thermal insulation
Author(s) -
Koo Myung Sool,
Chung Kwansoo,
Youn Jae Ryoun
Publication year - 2001
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10819
Subject(s) - materials science , thermal conductivity , blowing agent , polyurethane , composite material , nucleation , bubble , thermal conduction , conductivity , thermodynamics , chemistry , physics , parallel computing , computer science
A study on the apparent thermal conductivity of polyurethane foam was carried out. A HCFC (hydrochlorofluorocarbon) gas and carbon dioxide were used as the physical blowing agent and ultrasonic excitation was applied to increase the rate of bubble nucleation. The thermal conductivity of the binary gas mixture was predicted theoretically to estimate the apparent thermal conductivity of the polymer foam. Effects of conduction and radiation on the apparent thermal conductivity of the cellular polyurethane were considered with respect to the cell size and the effect of convection was neglected because of the small cell size. A laboratory RIM machine was designed and built for foaming experiments. The foaming experiments were performed at various processing conditions, and density, apparent thermal conductivity, number of cells, and cell sizes were measured. Best results such as low thermal conductivity and small bubbles were obtained when the polyol was mixed with the HCFC gas and saturated with carbon dioxide at 0.3 MPa, and foamed with ultrasonic nucleation.