Premium
Structure and properties of poly(vinyl chloride)‐triallyl cyanurate plastisols
Author(s) -
Tai HorngJer
Publication year - 2001
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10801
Subject(s) - materials science , plasticizer , creep , vinyl chloride , degree of unsaturation , fourier transform infrared spectroscopy , yield (engineering) , peroxide , composite material , polymer chemistry , chemical engineering , polymer , copolymer , organic chemistry , chemistry , engineering
Triallyl cyanurate (TAC) has been used as a reactive plasticizer to promote the high‐temperature creep resistance of poly(vinyl chloride) (PVC) plastisols. The resultant crosslinked structure is characterized using gel content and swell ratio measurements as well as Fourier transform infrared spectroscopy. The crosslinking reaction was initiated using peroxide. The effect on the network structure of using a free radical scavenger in the formulation has also been studied. The gel yield and crosslink density in the gel increase with increasing TAC concentration in the plastisol, while the grafted PVC fraction and the residual unsaturation of TAC behave in the opposite way. Introduction of TAC into the plastisol promotes creep resistance at high temperatures, and the logarithmic creep rate was found to decrease linearly with increasing crosslink density.