Premium
A microcellular processing study of poly(ethylene terephthalate) in the amorphous and semicrystalline states. Part I: Microcell nucleation
Author(s) -
Baldwin Daniel F.,
Park Chul B.,
Suh Nam P.
Publication year - 1996
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10538
Subject(s) - crystallinity , nucleation , materials science , amorphous solid , polyester , polymer , composite material , crystallization of polymers , polymer chemistry , chemical engineering , organic chemistry , chemistry , engineering
Abstract Microcellular semicrystalline polymers such as poly(ethylene terephthalate) show great promise for engineering applications because of their unique properties, particularly at higher densities. Recent studies reveal some high density microcellular polymers have longer fatigue lives and/or equal strengths to the neat polymer. Relatively few microcellular processing studies of semicrystalline polymers have been presented. In general, semicrystalline polymers are relatively difficult to microcellular process compared to amorphous polymers. In this paper and a companion paper, the microcellular processing of poly(ethylene terephthalate) in the amorphous and semicrystalline states is studied in order to quantify the processing differences. The microcellular processing steps addressed in this paper include gas/polymer solution formation and microvoid nucleation. Particular emphasis is given to microvoid nucleation comparing the processing characteristics of semicrystalline and amorphous materials. Moreover, this study identifies a number of critical process parameters. In general, the semicrystalline materials exhibit ten to one thousand times higher cell nucleation densities compared with the amorphous materials, resulting from heterogeneous nucleation contributions. The amorphous materials show a strong dependence on cell density, while the semicrystalline materials show a weaker dependence. Moreover, classical nucleation theory is not adequate to quantitatively predict the effects of saturation pressure on cell nucleation for either the amorphous or semicrystalline polyesters. Both the semicrystalline and amorphous materials exhibit constant nucleation cell densities with increasing foaming time. Foaming temperatures near the glass transition are found to influence the cell density of the amorphous polyesters, indicating some degree of thermally activated nucleation. Furthermore, classical nucleation theory is not adequate to predict the cell density dependence on foaming temperature. Similar to the amorphous polyesters above the glass transition temperature, nucleation in the semicrystalline materials is found to be independent of the foaming temperature.