z-logo
Premium
Mechanical and morphological behavior in polystyrene based compatible polymer blends
Author(s) -
Chun Byoung Chul,
Gibala Ronald
Publication year - 1996
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10462
Subject(s) - crazing , materials science , polystyrene , scanning electron microscope , composite material , polymer blend , glass transition , polymer , optical microscope , ultimate tensile strength , copolymer
Mechanical and morphological behavior of polystyrene (PS) based compatible polymer blend systems were studied using a tensile tester and scanning electron and optical microscopes. Four different binary compatible blend systems were employed and characterized: PS and poly (2,6‐dimethyl 1,4‐phenylene oxide) (PPO), PS and poly(vinylmethylether)(PVME), PS and poly(α‐methyl styrene)(PαMS), and PPO and PαMS. The compositional dependence of the mechanical properties showed a synergistic effect with respect to modulus, but a negative deviation from the rule of mixtures relationship for strain at break. From the scanning electron microscope (SEM) observations, a deformation mode transition from crazing to crazing and shear banding occurs at ˜25 wt% PPO in the PS/PPO blends, as indicated by the patch and river patterns above this composition. In the PS/PVME blends, a similar transition was observed at >10 wt% PVME. The PS/PαMS blends showed brittle fracture regardless of composition. The PPO/PαMS blends showed a brittle fracture for a PαMS content >25 wt%. Optical microscope (OM) observations showed that blending of PS/PPO and PS/PVME resulted in a decrease of craze density and length as the PPO and PVME content was increased. PS/PαMS and PPO/PαMS blends showed few crazes, all of which were localized near the fracture surface. The mechanical and morphological behavior can be explained using models of intermolecular interactions and entanglement density in compatible blends, respectively. Overall the mechanical property and the consequent morphological behavior were similar to the effect of antiplasticization.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here