Premium
A study of extrudate distortion in controlled‐rheology polypropylenes
Author(s) -
Baik Jae Jin,
Tzoganakis Costas
Publication year - 1998
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.10188
Subject(s) - die swell , materials science , composite material , rheology , shear rate , rheometry , extrusion , polypropylene , shear (geology) , dispersity , extrusion moulding , melt flow index , polymer , polymer chemistry , copolymer
The melt fracture characteristics of controlled‐rheology polypropylenes (CRPP) were studied by means of capillary rheometry experiments. CRPPs were produced through reactive extrusion of a commodity polypropylene resin using various peroxide concentrations. These materials exhibited lower molecular weights and narrower molecular weight distributions than those of the starting commodity resin. The CRPP materials studied were found to exhibit only gross melt fracture. At extremely high shear rates and relatively low temperatures, a sigmoidal flexure was observed in the flow curve of certain CRPPs. Generally, it was found that the severity of melt fracture decreased with increasing shear rate for a given material and temperature and in some cases, the extrudates exhibited completely smooth surfaces. Also, the severity of surface distortions was reduced when high L / D dies were employed at a given shear rate. The critical shear stress for the melt fracture onset was found to increase with decreasing molecular weight and polydispersity, and correlations have been developed between the critical stress values and the polymer polydispersity and shear compliance.