z-logo
open-access-imgOpen Access
Excessive positive response of model‐simulated land net primary production to climate changes over circumboreal forests
Author(s) -
Tei Shunsuke,
Sugimoto Atsuko
Publication year - 2020
Publication title -
plant‐environment interactions
Language(s) - English
Resource type - Journals
ISSN - 2575-6265
DOI - 10.1002/pei3.10025
Subject(s) - primary production , coupled model intercomparison project , environmental science , precipitation , climate change , ecosystem , productivity , climatology , vegetation (pathology) , carbon cycle , climate model , atmospheric sciences , physical geography , ecology , meteorology , geography , geology , medicine , macroeconomics , pathology , economics , biology
Land carbon cycle components in an Earth system model (ESM) play a crucial role in the projections of forest ecosystem responses to climate/environmental changes. Evaluating models from the viewpoint of observations is essential for an improved understanding of model performance and for identifying uncertainties in their outputs. Herein, we evaluated the land net primary production (NPP) for circumboreal forests simulated with 10 ESMs in Phase 5 of the Coupled Model Intercomparison Project by comparisons with observation‐based indexes for forest productivity, namely, the composite version 3G of the normalized difference vegetation index (NDVI3g) and tree‐ring width index (RWI). These indexes show similar patterns in response to past climate change over the forests, i.e., a one‐year time lag response and smaller positive responses to past climate changes in comparison with the land NPP simulated by the ESMs. The latter showed overly positive responses to past temperature and/or precipitation changes in comparison with the NDVI3g and RWI. These results indicate that ESMs may overestimate the future forest NPP of circumboreal forests (particularly for inland dry regions, such as inner Alaska and Canada, and eastern Siberia, and for hotter, southern regions, such as central Europe) under the expected increases in both average global temperature and precipitation, which are common to all current ESMs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here