z-logo
Premium
The validity of sequence symmetry analysis (SSA) for adverse drug reaction signal detection
Author(s) -
Wahab Izyan A.,
Pratt Nicole L.,
Wiese Michael D.,
Kalisch Lisa M.,
Roughead Elizabeth E.
Publication year - 2013
Publication title -
pharmacoepidemiology and drug safety
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.023
H-Index - 96
eISSN - 1099-1557
pISSN - 1053-8569
DOI - 10.1002/pds.3417
Subject(s) - medicine , adverse effect , gold standard (test) , placebo , food and drug administration , adverse event reporting system , drug class , positive predicative value , randomized controlled trial , drug , pharmacology , alternative medicine , predictive value , pathology
ABSTRACT Purpose To determine the validity of sequence symmetry analysis (SSA) method to detect adverse drug reactions from an administrative claims database. Methods Published randomised controlled trials (RCTs) of 19 medicines were identified through search databases, product information (PI) or the US Food and Drug Administration Web site. All adverse events (AEs) in the RCTs and the PI for the medicines were extracted. AEs were considered ‘gold standard positive events’ if they were reported as being statistically significant events in adequately powered RCTs. The remaining AEs were considered ‘gold standard negative events’ if the event was not listed as an AE in the PI for that medicine or any other medicine in its class. Indicators of AEs were identified by consensus from two clinical researchers. SSA was run for each medicine–indicator pair using four different time windows: 3, 6, 9 and 12 months. Results A total of 120 randomised placebo controlled trials were reviewed for the 19 tested medicines. A total of 165 medicine–indicator pairs (44 positive and 121 negative events) were identified and tested by SSA. At the 12‐month time window, the sensitivity, specificity, positive and negative predictive values of SSA were 61% (95%CI 0.46–0.74), 93% (95%CI 0.87–0.96), 77% (95%CI 0.61–0.88) and 87% (95%CI 0.80–0.92), respectively. Using a 3‐month time window, the SSA had a lower sensitivity (52%). Conclusions The SSA technique was found to have moderate sensitivity and high specificity for detecting ADRs. These results suggest that SSA is a potential tool for detecting ADRs using administrative claims data that could complement existing pharmacosurveillance methods. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here