Premium
Elastic constants and thermal expansivity of gel‐spun polyethylene fiber and its composites
Author(s) -
Choy C. L.,
Kwok K. W.,
Ma H. M.
Publication year - 1995
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.750160503
Subject(s) - materials science , composite material , shear modulus , transverse plane , fiber , modulus , anisotropy , aggregate modulus , polyethylene , thermal expansion , transverse isotropy , elastic modulus , dynamic modulus , dynamic mechanical analysis , polymer , structural engineering , physics , quantum mechanics , engineering
The five independent stiffness constants, C 11 , C 33 , C 44 , C 66 , and C 13 , and the axial and transverse thermal expansivity of unidirectional gel‐spun polyethylene fiber reinforced composites have been measured as functions of fiber volume fraction V f . The axial extensional modulus C 33 and axial Poisson's ratio v 13 follow the rule of mixtures, while the axial shear modulus C 44 , transverse shear modulus C 66 , and transverse plane‐strain bulk modulus C t ( = C 11 − C 66 ) obey the Halpin‐Tsai equation. Extrapolation to V f = 1 gives the five stiffness constants of gel‐spun polyethylene fiber. The tensile property of the fiber is highly anisotropic, with the axial Young's modulus about 40 times higher than the transverse Young's modulus. In contrast, the axial shear modulus exceeds the transverse shear modulus by only 5%. A similar treatment of the thermal expansivity data in terms of the Schapery equations gives an axial thermal expansivity of −1.25 × 10 −5 K −1 and a transverse thermal expansivity of 11.7 × 10 −5 K −1 for the fiber.