z-logo
Premium
The dependence of interfacial shear strength on matrix and interphase properties
Author(s) -
Rao Venkatesh,
Drzal Lawrence T.
Publication year - 1991
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.750120108
Subject(s) - materials science , interphase , composite material , shear (geology) , biology , genetics
Experiments were conducted to determine the dependence of the interfacial shear strength on the bulk material matrix properties using model compounds based on epoxy/amine chemistry. AS4, carbon fibers were used as the subject for these measurements with both a difunctional epoxy (DGEBA) system as well as a tetrafunctional epoxy (MY720) system. Amine curing agents were carefully chosen to produce matrices which produced a range of matrix properties from brittle, elastic to ductile, plastic. The fiber‐matrix interfacial chemistry was constant throughout this study by always using a stoichiometric amount of curing agent. The results indicate that, for both the difunctional as well as the tetrafunctional epoxy system, the interfacial shear strength (as determined by the fragmentation test) decreases nonlinearly with decreasing modulus of the matrix. Linear elastic analysis yields a nearly linear relationship, for both systems, between the interfacial shear strength and the product of strain to final break and the square root of the matrix shear modulus. A linear relationship is also found between the difference in test temperature and glass transition temperature of the cured matrix and the interfacial shear strength. Additionally, the failure mode is seen to remain interfacial as the ductility of the matrix changes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here