Premium
Enhancement of oil absorption properties of acrylic ester resin hybridized with well‐organized sea urchin‐like MnO 2
Author(s) -
Zhang Tao,
Zhang Chao,
Qiu Fengxian,
Yang Dongya,
Shi Shengnan,
Shi Tianhui,
Nie Xinbin
Publication year - 2018
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.24460
Subject(s) - materials science , absorption (acoustics) , swelling , chemical engineering , porosity , absorption of water , polymerization , hydrothermal circulation , absorption capacity , composite material , polymer , engineering
Acrylic ester resin (AER) is a promising oil‐absorbing material for oils and organic solvents absorption because it exhibits high oil retention ability, good swelling properties, and reusability while also being inexpensive, large‐scale production, and environmentally benign. However, the AER is not fully utilized owing to its low oil absorption capacity and slow oil absorption rate. In this work, we combine porous structures of MnO 2 and swelling properties of AER and design a novel route to fabricate sea urchin‐like MnO 2 /AER hybrids. In this route, the sea urchin‐like MnO 2 was prepared by a facile hydrothermal method in acidic media. The sea urchin‐like MnO 2 /AER hybrids with different wt% were synthesized by a microwave polymerization route. The resin hybrids exhibited very rough surfaces, which are beneficial for organic molecules absorption and diffusion into the interiors of materials. The resin hybrids can remove oils and organic solvents from water with high selectivity and absorption capacity, and can absorb not only floating oil but also heavy organic solvents underwater. The maximum absorption capacity of resin hybrids was found at the MnO 2 content of 3%, and maximum absorption capacity up to 32.5 times of their own weight, higher than that of the pure AER. The performances were mainly attributed to the unique porous structure of MnO 2 and swelling properties of AER, indicating the potential application of such oil‐absorbing resins to introduce the porous inorganic materials for developing new oils and organic solvents absorbent for removal of organic pollutants from the wastewater. POLYM. COMPOS., 39:4041–4049, 2018. © 2017 Society of Plastics Engineers