Premium
Effects of carbon fillers on the conductivity and tensile properties of polyetheretherketone composites
Author(s) -
King Julia A.,
Tomasi Julie M.,
KlimekMcDonald Danielle R.,
Miskioglu Ibrahim,
Odegard Greg M.,
King Todd R.,
Sutherland John W.
Publication year - 2018
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.24250
Subject(s) - peek , materials science , composite material , ultimate tensile strength , carbon black , composite number , thermal stability , polymer , chemical engineering , natural rubber , engineering
Polyetheretherketone (PEEK)‐based composites are used in aerospace applications due to their high mechanical strengths at temperatures >250°C, excellent chemical resistance properties, and outstanding dimensional stability. In this work, varying amounts of three different carbon fillers (carbon black [CB], graphene nanoplatelets [GNP], and carbon fiber [CF]) were added to PEEK to produce conductive composites for aerospace applications. Researchers extruded, injection molded, and performed electrical and thermal conductivity (TC) and tensile tests on GNP/PEEK, CB/PEEK, CF/PEEK, and CB/CF/PEEK composites. Five formulations could be used for electrostatic dissipative applications: 15 wt% GNP/PEEK, 20 wt% CF/PEEK, 2.5 wt% CB/10 wt% CF/PEEK, and 2.5 wt% CB/20 wt% CF/PEEK. Seven formulations could be used for electrically conductive applications: 30 wt% CF/PEEK, 5 wt% CB/PEEK, 7.5 wt% CB/PEEK, 10 wt% CB/PEEK, 2.5 wt% CB/30 wt% CF/PEEK, 5 wt% CB/30 wt% CF/PEEK, and 7.5 wt% CB/30 wt% CF/PEEK. The most conductive composite produced was 7.5 wt% CB/30 wt% CF/PEEK, which had an electrical resisitivity (1/electrical conductivity) of 0.56 Ω cm, a TC twice that of the neat PEEK, a tensile strength of 145 MPa, and a tensile modulus of 18.4 GPa. Per the authors' knowledge, properties on these GNP/PEEK, CB/PEEK, and CB/CF/PEEK composites have not been previously reported in the open literature. POLYM. COMPOS., 39:E807–E816, 2018. © 2016 Society of Plastics Engineers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom