z-logo
Premium
Reinforcement of enzyme hydrolyzed longer jute microcrystals in polylactic acid
Author(s) -
Maqsood Hafiz Shahzad,
Baheti Vijay,
Wiener Jakub,
Militky Jiri
Publication year - 2018
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.24036
Subject(s) - materials science , crystallinity , ultimate tensile strength , polylactic acid , composite material , composite number , differential scanning calorimetry , dynamic mechanical analysis , softening , izod impact strength test , hydrolysis , wood flour , polymer , biochemistry , chemistry , physics , thermodynamics
The waste jute fibers generated in textile industries were hydrolyzed to the form of longer jute microcrystals of size 5423, 3789, and 2,035 nm diameter after 4, 6, and 8 days of cellulase enzyme treatment. The obtained crystals were incorporated into poly(lactic acid) matrix at 1, 5, and 10 wt% loading to prepare composite films by solvent casting. The reinforcement potentials of microcrystals were investigated from the improvements in mechanical properties based on tensile tests, dynamic mechanical analysis, and differential scanning calorimetry. The maximum improvement was observed in case of 1 wt% composite film where tensile strength increased by 39.72% and crystallinity increased by 57.43% over neat PLA film. From storage modulus results, the improvement in load bearing capacity of composite films was found negative at 60°C than 35°C, which showed failure of jute microcrystals to improve the softening temperature of PLA matrix. At the end, when experimental results of initial modulus were compared with predicted values obtained from different mechanical models, a good level of agreement was found at 1 wt% loading of JMC. POLYM. COMPOS., 39:1089–1097, 2018. © 2016 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here