z-logo
Premium
Study of the effect of thermally reduced graphene oxide on the physical and mechanical properties of flexible polyurethane foams
Author(s) -
Piszczyk Łukasz,
Strankowski Michał,
Kosmela Paulina
Publication year - 2017
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23805
Subject(s) - materials science , graphene , polyurethane , oxide , composite material , glass transition , thermal stability , thermal , chemical engineering , polymer , nanotechnology , physics , meteorology , engineering , metallurgy
Flexible polyurethane (PU) foams were obtained from a two‐component system via the one‐step method. The foams were modified with thermally reduced graphene oxide added in the amount equal to 0.25, 0.5, and 0.75 wt%. The morphology, static and dynamic properties, and thermal stability of modified foams were determined. The application of carbon filler resulted in the visible increase in the cell size, apparent density, and rigidity of the modified systems, as confirmed by the measurements of glass transition temperature. Glass transition temperature increased with increasing content of nanofiller. In addition, thermally reduced graphene oxide had an effect on the thermal stability of the obtained foam systems. The addition of 0.5 wt% of nanofiller resulted in an increase in T 5 by 16°C compared with the reference foam. This study also demonstrated that after exceeding a specific content of thermally reduced graphene oxide, that is, 0.5%, the physicochemical properties of the obtained systems start to deteriorate. The research results showed that thermally reduced graphene oxide can be successfully used as a modifier of mechanical and thermal properties in flexible PU foams. POLYM. COMPOS., 38:2248–2253, 2017. © 2015 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here