Premium
Effect of peanut shell content on mechanical, thermal, and biodegradable properties of peanut shell/polylactic acid biocomposites
Author(s) -
Yamoum Chamaiporn,
Magaraphan Rathanawan
Publication year - 2017
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23627
Subject(s) - materials science , polylactic acid , crystallinity , composite material , dynamic mechanical analysis , ultimate tensile strength , izod impact strength test , biodegradable polymer , thermal decomposition , polymer , organic chemistry , chemistry
Peanut shell (PNS) was combined with polylactic acid (PLA) to form biocomposites. The biocomposites, with up to 40 wt% PNS, were prepared using a twin–screw extruder. The effect of PNS content on the thermal, mechanical, thermomechanical, morphological, and biodegradable properties was studied. The results showed that the addition of PNS caused a reduction of the melting temperature and the decomposition temperature. Furthermore, the crystallinity of the biocomposites slightly increased with increasing PNS up to 30 wt%. The morphological study showed poor interfacial adhesion between the PNS and PLA matrix. Nevertheless, the mechanical properties revealed that the maximum tensile strength and Young's modulus were at a 30 wt% PNS loading and decreased as more PNS was incorporated into the PLA matrix. The impact strength decreased with an increase in PNS content. The addition of PNS showed significantly improvement of the storage modulus of PLA at high temperature (>80°C). Moreover, the presence of PNS enhanced the biodegradability of the biocomposites. POLYM. COMPOS., 38:682–690, 2017. © 2015 Society of Plastics Engineers