z-logo
Premium
Mechanical, dynamic mechanical, and thermal characterization of fly ash and nanostructured fly ash‐waste polyethylene/high‐density polyethylene blend composites
Author(s) -
Satapathy Sukanya,
Bihari Nando Golok
Publication year - 2016
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23524
Subject(s) - high density polyethylene , materials science , composite material , ultimate tensile strength , polyethylene , flexural strength , composite number , izod impact strength test , maleic anhydride , flexural modulus , universal testing machine , dynamic mechanical analysis , polymer , copolymer
Disposal of polyethylene used as carry bags is the greatest challenge increasing day by day. Composite materials were prepared by mixing Fly ash (FA) and nanostructured fly ash (NFA) from thermal power station as filler and blends of Waste polyethylene (WPE)(carry bags) collected from municipal solid waste (MSW) with virgin high‐density polyethylene (HDPE) as matrix. Different modifications were induced to improve the overall properties of these composites. At first, the WPE/HDPE blend matrix was modified by grafting with maleic anhydride (MA) and the composite prepared with FA/NFA. Then, the WPE/HDPE‐FA/NFA composite as a whole was treated with electron beam irradiation at 250 kGy radiation dose and finally the FA/NFA filler was treated with radiation dose of 250 kGy and the composite prepared. Significant enhancement in tensile strength, flexural strength, flexural modulus, and hardness are observed for MA modified and irradiated composites, the increase being more prominent in irradiated composites. Furthermore, an increase in storage/loss moduli with enhanced thermal stability was observed with the addition of FA/NFA and upon modifications. The analysis of the tensile fractured surfaces by scanning electron microscopy was in well correlation with the mechanical properties obtained. In summary, after analyzing the effects of the three different modifications on mechanical, dynamic mechanical and thermal properties, the irradiation on to the WPE/HDPE‐FA/NFA composites investigated was selected as the most appropriate for future applications. POLYM. COMPOS., 37:3256–3268, 2016. © 2015 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here