Premium
Morphology, mechanical property, and modeling evaluation of P(3HB‐co‐4HB)/nano‐ZnO composites
Author(s) -
Hu Jingwen,
Xia Runpu,
Yang Hua,
Lu Xiuping
Publication year - 2016
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23509
Subject(s) - materials science , composite material , nano , volume fraction , ultimate tensile strength , scanning electron microscope , toughness , rheology , morphology (biology) , universal testing machine , elastic modulus , dispersion (optics) , genetics , physics , optics , biology
Poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3HB‐co‐4HB)) and nanometer zinc oxide (nano‐ZnO) modified by solid titanate coupling agent (TMC980) were selected to prepare P(3HB‐co‐4HB)/nano‐ZnO composites via melt blending. Scanning electron microscope (SEM), capillary rheometer, polarized optical microscopy (POM), and universal testing machine were used to characterize the fracture morphology, rheological property, spherulitic morphology, and mechanical properties of P(3HB‐co‐4HB)/nano‐ZnO composites. Halpin‐Tsai equation was used to quantitatively evaluate the dispersion and enhancement effects of modified nano‐ZnO on P(3HB‐co‐4HB). The results demonstrated that modified nano‐ZnO at 0.2%∼0.3% of volume fraction could significantly improve the tensile strength, elastic modulus and toughness, increase the melt viscosity, refine the spherulitic size, and rough the fracture morphology of P(3HB‐co‐4HB)/nano‐ZnO composites. Based on the effective aspect ratio (ξ) from Halpin‐Tsai model evaluation, the optimal dosage of nano‐ZnO for P(3HB‐co‐4HB)/nano‐ZnO composites was also at 0.2%∼0.3% of volume fraction. The Halpin‐Tsai equation was found to predict the experimental data most accurately for the P(3HB‐co‐4HB)/nano‐ZnO composites. POLYM. COMPOS., 37:3113–3121, 2016. © 2015 Society of Plastics Engineers