z-logo
Premium
Design and fabrication of long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites for electromagnetic interference shielding and high mechanical performance
Author(s) -
Zhang Shuangshuang,
Wang Xiaodong,
Wu Dezhen
Publication year - 2016
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23465
Subject(s) - materials science , composite material , ultimate tensile strength , electromagnetic shielding , fiber , flexural strength
The long‐carbon‐fiber‐reinforced polyamide‐6/nickel powder composites were designed as electromagnetic interference (EMI) shielding materials and then were prepared through the joint processing of melt blending and thermoplastic pultrusion. The obtained composites show high conductivity and permittivity as well as a high dielectric loss with co‐addition of carbon fiber and nickel powders, which makes the resulting composites a higher level of shielding effectiveness due to the combination of conductive and magnetic fillers. The composites are capable of shielding mainly through absorption rather than reflection. On the other hand, the composites achieved significant improvements in tensile, flexural, and impact strength due to the superiority of the long‐carbon‐fiber‐reinforced technique. The residual fiber length in the injection‐molded specimens is greatly superior to the critical one predicted by the Kelly–Tyson model. This takes full advantage of the strength of the reinforcing fiber itself, thus leading to a promising reinforcement effect. The enhancement of impact toughness is due to the energy dissipation by fiber fracture as a result of long fiber effect. The morphologic investigation indicated that the fiber fracture and fiber pullout concurred on the impact and tensile fracture surfaces, and the former preceded the latter. Highlighted with both good EMI shielding properties and excellent mechanical performance, the composites designed by this work exhibit potential applications for the automotive, electronic, aerospace, and military industries. POLYM. COMPOS., 37:2705–2718, 2016. © 2015 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here