Premium
Hydrogen bond containing multiwalled carbon nanotubes in polyurethane composites
Author(s) -
Inglefield David L.,
Bodnar Robert J.,
Long Timothy E.
Publication year - 2016
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23311
Subject(s) - surface modification , materials science , composite material , polyurethane , thermogravimetric analysis , carbon nanotube , x ray photoelectron spectroscopy , raman spectroscopy , nanocomposite , ultimate tensile strength , chemical engineering , physics , optics , engineering
of hydrogen bonding sites onto multi‐walled carbon nanotubes (MWCNTs) included carboxylic acid, amide‐amine, and novel amide‐urea MWCNTs for the formation of homogenous polyurethane composites. Acid oxidation and subsequent derivatization introduced hydrogen bonding functionality onto MWCNTs to reveal the effect of surface functionalization on mechanical properties in a 45 wt% hard segment polyurethane matrix. Raman spectroscopy showed an increase in the D/G peak ratio, which indicated successful oxidation, and X‐ray photoelectron spectroscopy also revealed elemental compositions that supported each step of the functionalization strategy. Thermogravimetric analysis supported functionalization with an increase in percent weight loss for each functionalization, and the MWCNT surface functionalization determined pH‐dependent dispersibility. The nonfunctionalized MWCNT composites showed poor dispersion with transmission electron microscopy, and in sharp contrast, the functionalized composites displayed homogenous dispersions. Tensile testing revealed improved stress at break in the functionalized MWCNT composites at low loadings due to homogenous dispersion. POLYM. COMPOS., 37:1425–1434, 2016. © 2014 Society of Plastics Engineers