Premium
Experimental analysis and theoretical modeling of the mechanical behavior of short glass fiber and short carbon fiber reinforced polycarbonate hybrid composites
Author(s) -
Law T.T.,
Phua Y.J.,
Senawi R.,
Hassan A.,
Mohd Ishak Z.A.
Publication year - 2016
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23289
Subject(s) - materials science , composite material , polycarbonate , ultimate tensile strength , glass fiber , composite number , fiber , molding (decorative) , tensile testing , scanning electron microscope , plastics extrusion , modulus , izod impact strength test
In this research, polycarbonate (PC) composites with short glass fiber (SGF) and short carbon fiber (SCF) hybrid fiber reinforcements were compounded by single screw extruder and specimens were prepared by injection molding machine. This article aims to investigate the mechanical properties of PC hybrid composites, by means of the experimental and the theoretical methods. The composites were subjected to tensile test. Experimental results showed the improvements in tensile strength and modulus by increasing the SCF content of the hybrid composite. The theoretical tensile strength was predicted based on Kelly–Tyson model and rule of hybrid mixture. Kelly–Tyson model showed to be a good approximation to predict the tensile strength of composite. When the SCF was replaced by milled carbon fiber (MCF) to form a PC/SGF/MCF hybrid system, poorer mechanical properties are reported due to the weaker interfacial adhesion between MCF and PC, as proven by the scanning electron microscopy. POLYM. COMPOS., 37:1238–1248, 2016. © 2014 Society of Plastics Engineers