z-logo
Premium
The structure and photocatalytic performances of mechanically synthesized poly(3′,4′‐ethylenedioxy‐2,2′:5′,2″‐Terthiophene)/Zno composites
Author(s) -
Jamal Ruxangul,
Ali Ahmat,
Zhang Li,
Osman Yakupjan,
Rahman Adalet,
Abdiryim Tursun
Publication year - 2015
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23068
Subject(s) - materials science , photocatalysis , ball mill , composite material , polymer , crystallinity , ethylenedioxy , nano , chemical engineering , organic chemistry , catalysis , chemistry , alkyl , engineering
Poly(3′,4′‐ethylenedioxy‐2,2′:5′,2″‐terthiophene)/ZnO(poly(TET)/ZnO) composites with the ratio of poly(TET) and nano‐ZnO from 3:1 to 1:3 were synthesized by hand grinding and ball milling methods, respectively. The photocatalytic activities of the composites were examined through the degradation processes of methylene blue (MB) solution under UV light irradiation, and the possible mechanism for the photocatalytic activity enhancement by synergetic effects between nano‐ZnO and poly(TET) was proposed. The results showed that the strong interactions between the poly(TET) and nano‐ZnO occurred in the case of ball milling method. The results also proved that the crystallinity of ZnO was not disturbed in both of methods, and the nano‐ZnO was uniformly distributed in polymer matrix in the case of ball milling method. The comparative studies showed that the addition of the nano‐ZnO could enhance the photocatalytic activities of the composites. The highest degradation efficiency (100%) at 3 h under UV light irradiation occurred in the case of poly(TET)/ZnO(1:1) synthesized by ball milling method. Furthermore, the nanocompsosite displayed higher photocatalytic activity than nano‐ZnO, which was due to the holes ( h + ) transferring from the valence band of ZnO to the polymer backbone and the adsorption of MB molecules in polymer matrix via π–π conjugation between MB and aromatic regions of the poly(TET). POLYM. COMPOS., 36:1597–1605, 2015. © 2014 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here