z-logo
Premium
Mechanical characterization and fractography of glass fiber/polyamide (PA6) composites
Author(s) -
Durai Prabhakaran R.T.,
Pillai Saju,
Charca Samuel,
Oshkovr Simin A.,
Knudsen Hans,
Andersen Tom Løgstrup,
Ilsted Bech Jakob,
Thomsen Ole Thybo,
Lilholt Hans
Publication year - 2015
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.23003
Subject(s) - materials science , composite material , glass fiber , polyamide , flexural strength , composite number , scanning electron microscope , fractography , fiber
The mechanical properties of the glass fiber reinforced Polyamide (PA6) composites made by prepreg tapes and commingled yarns were studied by in‐plane compression, short‐beam shear, and flexural tests. The composites were fabricated with different fiber volume contents (prepregs—47%, 55%, 60%, and commingled—48%, 48%, 49%, respectively) by using vacuum consolidation technique. To evaluate laminate quality in terms of fiber wet‐out at filament level, homogeneity of fiber/matrix distribution, and matrix/fiber bonding standard microscopic methods like optical microscopy and scanning electron microscopy (SEM) were used. Both commingled and prepreg glass fiber/PA6 composites (with V f ∼ 48%) give mechanical properties such as compression strength (530–570 MPa), inter‐laminar shear strength (70–80 MPa), and transverse strength (80–90 MPa). By increasing small percentage in the fiber content show significant rise in compression strength, slight decrease in the ILSS and transverse strengths, whereas semipreg give very poor properties with the slight increase in fiber content. Overall comparison of mechanical properties indicates commingled glass fiber/PA6 composite shows much better performance compared with prepregs due to uniform distribution of fiber and matrix, better melt‐impregnation while processing, perfect alignment of glass fibers in the composite. This study proves again that the presence of voids and poor interface bonding between matrix/fiber leads to decrease in the mechanical properties. Fractographic characterization of post‐failure surfaces reveals information about the cause and sequence of failure. POLYM. COMPOS., 36:834–853, 2015. © 2014 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here