Premium
Functionalizing carbon nanotubes by grafting cyclotriphosphazene derivative to improve both mechanical strength and flame retardancy
Author(s) -
Ma Haiyun,
Zhao Lici,
Liu Jiawei,
Wang Jun,
Xu Jianzhong
Publication year - 2014
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22883
Subject(s) - materials science , composite material , nanocomposite , ultimate tensile strength , carbon nanotube , intumescent , fire retardant , grafting , dispersion (optics) , epoxy , polymer , physics , optics
An intumescent flame‐retardant, hex(4‐carboxylphenoxy) cyclotriphosphazene (HCPCP) was synthesized and covalently grafted on to the surface of multiwalled carbon nanotubes (MWNTs) to obtain MWNT‐HCPCP. MWNT/epoxy resin (EP) and MWNT‐HCPCP/ EP nanocomposites were prepared via thermal curing. Transmission electron microscopy results showed that a core–shell structure with MWNTs as the hard core and HCPCP as the soft shell were formed after HCPCP (10 wt%) were attached to the MWNTs. The results of flammability tests showed an increased limited oxygen index value for MWNT‐HCPCP/EP nanocomposites. The mechanical properties including tensile strength and elongation were both dramatically improved due to the better dispersion of MWNT‐HCPCP in the EP matrix. The grafting of HCPCP can improve both the dispersion of nanotubes in polymer matrix and flame retardancy of the nanocomposites. POLYM. COMPOS., 35:2187–2193, 2014. © 2014 Society of Plastics Engineers