z-logo
Premium
Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites
Author(s) -
Bhagat Vineet Kumar,
Biswas Sandhyarani,
Dehury Janaki
Publication year - 2014
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22736
Subject(s) - materials science , composite material , ultimate tensile strength , epoxy , flexural strength , coir , absorption of water , fiber , glass fiber , natural fiber , scanning electron microscope , izod impact strength test , composite number
Fiber reinforced polymer composites has been used in a variety of application because of their many advantages such as relatively low cost of production, easy to fabricate, and superior strength compare to neat polymer resins. Reinforcement in polymer is either synthetic or natural. Synthetic fiber such as glass, carbon, etc. has high specific strength but their fields of application are limited due to higher cost of production. Recently there is an increase interest in natural composites which are made by reinforcement of natural fiber. In this connection, an investigation has been carried out to make better utilization of coconut coir fiber for making value added products. The objective of the present research work is to study the physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. The effect of fiber loading and length on mechanical properties like tensile strength, flexural strength, and hardness of composites is studied. The experimental results reveal that the maximum strength properties is observed for the composite with 10 wt% fiber loading at 15 mm length. The maximum flexural strength of 63 MPa is observed for composites with 10 wt% fiber loading at 15 mm fiber length. Similarly, the maximum hardness value of 21.3 Hv is obtained for composites with 10 wt% fiber loading at 20 mm fiber length. Also, the surface morphology of fractured surfaces after tensile testing is examined using scanning electron microscope (SEM). POLYM. COMPOS., 35:925–930, 2014. © 2013 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here