z-logo
Premium
Preparation and properties of silanized vapor‐grown carbon nanofibers/epoxy shape memory nanocomposites
Author(s) -
Ding Juan,
Zhu Yaofeng,
Fu Yaqin
Publication year - 2014
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22675
Subject(s) - materials science , silanization , nanocomposite , composite material , silane , carbon nanofiber , epoxy , surface modification , carbon nanotube , chemical engineering , engineering
Silanized vapor‐grown carbon nanofiber/epoxy (silanized‐VGCNF/EP) shape memory polymer (SMP) nanocomposites are successfully fabricated by using a composite molding technology. The surface functionalization of VGCNF is performed using an acid treatment followed by a reaction with silane. The oxidation as well as silanization of VGCNF and silanized‐VGCNF/EP nanocomposites are systematically and explicitly characterized using various analytical methods. The influence of the silane‐functionalized VGCNF on the properties of VGCNF/EP nanocomposites is investigated using field emission scanning electronic microscopy (FE‐SEM) and a dynamic mechanical analysis (DMA). The shape memory properties of the silanized‐VGCNF/EP nanocomposites are evaluated by a fold‐deploy shape memory test. The results reveal that the silanized‐VGCNF is preferably dispersed in the epoxy resin matrix. Furthermore, the glass transition temperature of silanized‐VGCNF/EP nanocomposites is enhanced, and the shape memory properties of the silanized‐VGCNF/EP nanocomposites are significantly improved. POLYM. COMPOS., 35:412–417, 2014. © 2013 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom