Premium
Enhanced mechanical and thermal properties of polyimide/organically modified montmorillonite hybrid film based on stable poly(amic acid) ammonium salt
Author(s) -
Tang Baiqing,
Cai Dongdan,
Sun Jun,
Wang Jianjun,
Dai Lixing
Publication year - 2013
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22616
Subject(s) - polyimide , materials science , montmorillonite , pyromellitic dianhydride , ultimate tensile strength , thermal stability , polymer chemistry , composite material , triethylamine , salt (chemistry) , polymerization , polymer , chemical engineering , layer (electronics) , organic chemistry , chemistry , engineering
In this study, polyimide/organically modified montmorillonite (PI/OMMT) hybrid film was prepared by in situ polymerization from the stable poly(amic acid) ammonium salt/OMMT (PAAS/OMMT) precursor hybrid. PAAS was obtained by incorporating calculated triethylamine into terpolymer poly(amic acid) (PAA), which was synthesized by pyromellitic dianhydride (PMDA), 4,4′‐oxydianiline and p ‐phenylenediamine in dimethylacetamide (DMAc). OMMT as a type of layered clays was prepared through surface treatment of montmorillonite (MMT) with 1‐hexadecylamine. Mechanical property measurements of PI/OMMT hybrid film indicated that the addition of 5 wt% of OMMT increased the Young's modulus of PI film up to 11.24 GPa, which is 58% higher than the pristine PI film from PAAS. Besides, the tensile strength increased to 168.36 MPa, which was higher than that of PI film derived from PAA (164.3 MPa) and PI film derived from PAAS (145.2 MPa). Moreover, the thermal stabilities of PI/OMMT hybrid film with appropriate OMMT content were also better than those of original PI films. POLYM. COMPOS., 34:2076–2081, 2013. © 2013 Society of Plastics Engineers