z-logo
Premium
Cure kinetic study of organoclay‐unsaturated polyester resin nanocomposites by using advanced isoconversional approach
Author(s) -
Poorabdollah Mehdi,
Beheshty Mohammad Hosain,
Atai Mohammad,
Vafayan Mehdy
Publication year - 2013
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22587
Subject(s) - materials science , styrene , organoclay , differential scanning calorimetry , activation energy , polystyrene , nanocomposite , polymerization , polymer chemistry , curing (chemistry) , copolymer , polyester , benzoyl peroxide , alkyd , chemical engineering , composite material , polymer , chemistry , organic chemistry , coating , physics , engineering , thermodynamics
Curing behavior of an unsaturated polyester (UP) resin containing 3 wt % Cloisite 10A (UP/10A) and 3 wt % Cloisite 30B (UP/30B) catalyzed with methyl ethyl ketone peroxide (MEKP) as initiator and promoted by cobalt naphthenate as accelerator was investigated by dynamic differential scanning calorimetry (DSC) at heating rates of 2, 2.5, 3, and 3.5°C min −1 . X‐ray diffraction and transmission electron microscopy were utilized to evaluate the morphology of UP/10A and UP/30B nanocomposites. Kinetic parameters of cure reactions were evaluated using the advanced isoconversional method. The addition of nanoclay resulted in a decrease in the activation energy of the redox reaction compared to that of the neat UP resin. The pre‐exponential factor of the redox reaction for UP/10A and UP/30B was less than that of the neat UP. Results showed an increase in the concentration of styrene between Cloisite 10A platelets leading to a decrease in the intralayer styrene content. The high concentration of styrene between nanoclay layers may lead to the formation of polystyrene chains grafted on the alkyds chains. This homo‐polymerization was also observed in the variation of activation energy of UP/10A specimen versus the degree of conversion for 0.42 ≤ α ≤ 0.6 which is very close to the activation energy of free radical homo‐polymerization of styrene. POLYM. COMPOS., 34:1824–1831, 2013. © 2013 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here