Premium
Doped polyaniline/multiwalled carbon nanotube composites: Preparation and characterization
Author(s) -
Cui Liqiang,
Yu Junsheng,
Lv Yinghai,
Li Guijiang,
Zhou Shixue
Publication year - 2013
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22520
Subject(s) - materials science , polyaniline , thermogravimetric analysis , carbon nanotube , nanotube , in situ polymerization , composite material , aniline , thermal stability , polymerization , scanning electron microscope , composite number , fourier transform infrared spectroscopy , monomer , ethylenediamine , nanocomposite , chemical engineering , polymer , organic chemistry , chemistry , engineering
Polyaniline (PANI)/multiwalled carbon nanotube (MWNT) composites with a uniform tubular structure were prepared from in situ polymerization by dissolving amino‐functionalized MWNT (a‐MWNT) in aniline monomer. For this the oxidized multiwalled nanotube was functionalized with ethylenediamine, which provided ethylenediamine functional group on the MWNT surface confirmed by Fourier‐transform infrared spectra (FT‐IR). The a‐MWNT was dissolved in aniline monomer, and the in situ polymerization of aniline in the presence of these well dispersed nanotubes yielded a novel tubular composite of carbon nanotube having an ordered uniform encapsulation of doped polyaniline. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed that the nanotubes were coated with a PANI layer. The thermal stability and electrical conductivity of the PANI /MWNTs composites were characterized by thermogravimetric analysis (TGA) and conventional four‐probe method respectively. Compared with pure PANI, the electrical conductivity and the decomposition temperature of the MWNTs/PANI composites increased with the enhancement of MWNT content in PANI matrix. POLYM. COMPOS., 34:1119–1125, 2013. © 2013 Society of Plastics Engineers