Premium
Thermal conductive performance of organosoluble polyimide/BN and polyimide/(BN + ALN) composite films fabricated by a solution‐cast method
Author(s) -
Kuo D.H.,
Lin C.Y.,
Jhou Y.C.,
Cheng J.Y.,
Liou G.S.
Publication year - 2013
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22396
Subject(s) - polyimide , materials science , composite number , composite material , electrical conductor , thermal conductivity , ceramic , thermal , porosity , volume (thermodynamics) , layer (electronics) , physics , quantum mechanics , meteorology
Organosoluble polyimide (PI)/ceramic composite films with different BN or (BN + AlN) contents were under investigation for their thermal conductive performances. The chosen polyimide constituted by 4,4′‐oxydiphthalic dianhydride/2,2‐bis(3‐amino‐4‐hydroxyphenyl)hexafluor opropane could be dissolved and cast into thin films at room temperature. The commercially available BN and AlN fillers up to a volume ratio of 0.6 were added to the polyimide and their thermal conductive performances were measured. BN powders needed a surface precoating treatment to avoid sedimentation. The dense and flexible PI/BN composite films, after a drying treatment at 200°C, showed high thermal conductivity of 2.3 W/m·K −1 at a BN volume ratio of 0.6, as compared with 0.13 W/m·K −1 for pristine polyimide. However, in the case of PI/(BN + AlN) composite films, thermal conductive performance degraded because the films became highly porous at the higher AlN content. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom