Premium
Thermal, dielectric, and rheological properties of aluminum nitride/liquid crystalline copoly(ester amide) composite for the application of thermal interface materials
Author(s) -
Sinh Le Hoang,
Hong JeongMi,
Son Bui Thanh,
Trung Nguyen Ngoc,
Bae JinYoung
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22355
Subject(s) - materials science , composite material , dielectric , composite number , dispersant , nitride , scanning electron microscope , aluminium , rheology , thermal conductivity , dielectric loss , layer (electronics) , dispersion (optics) , physics , optoelectronics , optics
In this article, thermally conductive and relatively low dielectric constant polymer matrix composites of an aluminum nitride filler (AlN) and a novel liquid crystalline copoly(ester amide) (LCP) were prepared via a solution blending method in the presence of a phosphate containing dispersant. The viscosities, thermal conductivities, and dielectric properties of the prepared AlN/LCP composites were investigated as a function of AlN loading. Our experimental results demonstrated that the AIN/LCP composite with AlN concentration of 50 wt% had 2.5 times higher thermal conductivity than pure LCP (2.020 and 0.817 W/mK for composite with 50 wt% of AlN and pure LCP, respectively), but its dielectric constant remained at low level, i.e., < 9.0 at frequency of 900 Hz. In addition, viscosities of AlN/LCP pastes in the N ‐methyl‐2‐pyrrolidinone solvent remained at acceptable levels with the high AlN loading of 50 wt%. The morphologies of the prepared composites were also investigated by scanning electron microscopy. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom