Premium
Air‐dried 3D‐collagen–chitosan biocomposite scaffold for tissue engineering application
Author(s) -
Kumar B. Santhosh,
Aigal Sahaja,
Ramesh D. Vijaya
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22345
Subject(s) - biocomposite , chitosan , materials science , ultimate tensile strength , composite number , scaffold , composite material , elongation , tissue engineering , scanning electron microscope , emulsion , chemical engineering , biomedical engineering , medicine , engineering
Collagen–chitosan scaffolds of different compositions were developed using emulsion air‐drying method. The scaffolds prepared adding 10–30 wt% of chitosan to collagen improved the mechanical properties of the composite scaffold, and 7:3 ratio (collagen :chitosan) was found to be a better composite having a tensile strength of 13.57 MPa with 9% elongation at break. The water‐uptake characteristics were performed at different pH and found to be ameliorated for the composite scaffolds compared to pure collagen and chitosan scaffold, respectively. The pores ranging from 100 to 300 μm were well interconnected, and their distribution was fairly homogeneous in the scaffold as observed through scanning electron microscopy. Furthermore, the scaffold decreased the bacterial counts and supported fibroblasts attachment and proliferation, thus demonstrating this composite to be a good substrate for biomedical application.POLYM. COMPOS., 33:2029–2035, 2012. © 2012 Society of Plastics Engineers