Premium
Influence of silane‐coupling agents on the performance of morphological, mechanical, thermal, electrical, and rheological properties of polycarbonate/fly ash composites
Author(s) -
Parvaiz Mohammad Rahail
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22325
Subject(s) - materials science , thermogravimetric analysis , composite material , polycarbonate , thermal stability , differential scanning calorimetry , scanning electron microscope , ultimate tensile strength , flexural strength , fly ash , extrusion , chemical engineering , physics , engineering , thermodynamics
Fly ash, waste product of thermal power station, generated in huge quantities has been posing problems of its disposal. As such, it contains a variety of inorganic oxide and is available in finely powder form. Attempts have been made for its utilization, as filler in engineering plastic. The fly ash (FA) fillers reinforced polycarbonate (PC) composites were fabricated using a economically and environmentally viable method of melt extrusion and compression molding technique. The FA surface was chemically modified using vinyltrimethoxysilane and 3–Aminopropyltriethoxysilane. The feasibility of using treated FA/PC composites was examined in terms of scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and rheological behavior. The morphology shows a good dispersion and strong interfacial interaction between PC and modified FA than the unmodified counterpart. Mechanical investigation manifested that modified FAs have strengthening effect (increase in tensile and flexural strength) on the mechanical performance of PC composites. Rheological behavior of PC/FA composites was characterized by parallel plate rheometer system. Addition of treated FA imparted dimensional and thermal stability, which has been observed in scanning electron micrographs and in thermogravimetric analysis plot. The increase of thermal stability has been explained based on increased mechanical interlocking of PC chains inside the structure of FA. This study shows that surface modification of FA is one of the key factors influencing the mechanical and thermal properties of PC/FA composites. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers