z-logo
Premium
Structure and properties of peroxide dynamically vulcanized polypropylene/ethylene–propylene–diene/zinc dimethacrylate composites
Author(s) -
Chen Yukun,
Xu Chuanhui,
Cao Liming,
Wang Yanpeng
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22250
Subject(s) - vulcanization , materials science , crystallinity , composite material , polypropylene , natural rubber , epdm rubber , scanning electron microscope , composite number , izod impact strength test , polymerization , ethylene propylene rubber , ultimate tensile strength , polymer , copolymer
Peroxide dynamically vulcanized thermoplastic olefin (TPO) based on polypropylene (PP)/ethylene–propylene–diene (EPDM) loaded with zinc dimethacrylate (ZDMA) was prepared. The addition of ZDMA improved the complex viscosity of the resulting materials in the melt state significantly, as determined from oscillatory rheology analyses. Dynamic mechanical analysis (DMA) and transmission electron microscopy (TEM) examinations were performed to evaluate the structure of the PP/EPDM/ZDMA composite. Atomic force microscope (AFM) and scanning electron microscopy (SEM) were used to study the morphology. The degree of crystallinity was evaluated using X‐ray diffraction method (XRD). The results revealed that incorporation of ZDMA resulted in a size reduction of the rubber droplets and improved the compatibility between rubber and PP phases. The nanoparticles of the polymerized ZDMA (PZDMA) served as an effective nucleating agent for the crystallization of PP. The rheological properties and mechanical properties were improved by ZDMA. Particularly, the izod impact strength of the PP/EPDM/ZDMA (80/20/6, w/w) composite is nearly 2 times higher than the PP/EPDM (80/20, w/w) and 12 times higher than the PP; besides, the elongation at break of the PP/EPDM/ZDMA (80/20/6, w/w) is 3 times higher than that of the PP/EPDM (80/20, w/w) and 6 times higher than the PP. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here