z-logo
Premium
Electrical conductivity and oxygen permeability of polyacrylonitrile/multiwalled carbon nanotubes composites
Author(s) -
Pradhan Ajaya K.,
Swain Sarat K.
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22239
Subject(s) - materials science , polyacrylonitrile , nanocomposite , carbon nanotube , composite material , fourier transform infrared spectroscopy , scanning electron microscope , oxygen permeability , chemical engineering , oxygen , polymer , chemistry , organic chemistry , engineering
Polyacrylonitrile (PAN)/Multiwalled carbon nanotube (MWCNT) nanocomposites were prepared by nonconventional ultrasonic‐assisted emulsifier free emulsion polymerization technique with variable percentage of functionalized carbon nanotube. PAN/MWCNT nanocomposites were characterized by ultraviolet‐visible (UV‐visible) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The result from UV‐visible suggested that the functionalized MWCNT had interfacial interaction with PAN matrices. The surface morphology of functionalized MWCNT and PAN/MWCNT nanocomposites were studied by scanning electron microscopy (SEM). Electrical properties of PAN/MWCNT nanocomposites were measured and the result indicated that the conductivity increased with increasing concentration of MWCNTs. The oxygen permeability of PAN/MWCNT nanocomposites gradually increased with increase of MWCNT concentration, the result which was in agreement with the vertical alignment ofMWCNT in SEM. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here