Premium
Investigation of molecular interaction between single‐walled carbon nanotubes and conjugated polymers
Author(s) -
Zaminpayma Esmaeil,
Mirabbaszadeh Kavoos
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22182
Subject(s) - materials science , carbon nanotube , polymer , radius of gyration , chirality (physics) , conjugated system , interaction energy , polymer chemistry , monomer , composite material , radius , chemical physics , chemical engineering , molecule , organic chemistry , chemistry , chiral symmetry breaking , physics , computer security , quantum mechanics , computer science , nambu–jona lasinio model , engineering , quark
Single‐walled carbon nanotubes (SWNTs) have unique properties such as high electrical conductivity and high tensile strength. Their composites with polymers have a great role in new sciences such as organic solar cells and ultrastrong lightweight materials. In this article, molecular dynamic simulations with polymer consistent force field are performed to study the interaction between SWNTs and conjugated polymers including poly(2‐methoxy‐5‐(3‐7‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (MDMO‐PPV), poly(3‐hexythiophene) (P3HT), and poly[(9,9′‐dioctylfluorenyl‐2,7‐diyl)‐ co ‐bis( N,N ′‐(4,butylphenyl))bis( N,N ′‐phenyl‐1,4‐phenylene)diamine] (PFB). We computed the interaction energy and morphology of polymers adsorbed to the surface of SWNTs was studied by the radius of gyration (Rg). The influence of important factors such as SWNT radius, chirality, and the temperature on the interfacial adhesion of SWNT–polymer and Rg of polymers were studied. We found that the strongest interaction between the SWNTs and these polymers was, first observed for P3HT, then MDMO‐PPV, and finally PFB. Our results showed that the interaction energy is influenced by SWNT radius and the specific monomer structure of the polymers, but the effects of chirality and temperature are very weak. In addition, we found that the temperature, chirality, and radius have not any important effect on the radius of gyration. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers