z-logo
Premium
Effects of multiple carbon fillers on the rheology of polycarbonate‐based composites
Author(s) -
Via Michael D.,
Morrison Faith A.,
King Julia A.,
Beach Edsel A.,
Wiese Kyle R.,
Bogucki Gregg R.
Publication year - 2012
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.22149
Subject(s) - materials science , composite material , composite number , filler (materials) , carbon black , rheology , viscosity , carbon nanotube , graphite , polycarbonate , natural rubber
Adding conductive carbon fillers to insulating thermoplastic polymers increases the electrical conductivity of the resulting composite, which could allow them to be used in electrostatic dissipative and semiconductive applications. Adding fillers often increases viscosity, which can make the material more difficult to process. In this study, three different carbon fillers [carbon black (CB), carbon nanotubes (CNT), and exfoliated graphite nanoplatelets (GNP)] were studied via three different combinations of two different fillers (CB/CNT, CB/GNP, and CNT/GNP). These filler combinations were studied via three 3 2 factorial designs, which considered the following loading levels: CB: 0, 2, and 5 wt%; CNT: 0, 1, and 5 wt%; and GNP: 0, 2, and 5 wt%. These composites were compounded, injection molded, and tested for electrical conductivity and steady shear viscosity. CB and GNP exhibited classic filler behavior, increasing the composite viscosity with increased filler loading. CNT acted differently, lowering the composite viscosity with increased filler loading. When CB and GNP were combined, the viscosity increase was additive. When CNT was combined with either CB or GNP, the resultant composite had a lower viscosity than the corresponding single filler composite with equivalent loadings of CB or GNP. This viscosity lowering effect of CNT, even at loadings as low as 1 wt%, allows for increased filler loadings of CB or GNP with little impact on processability. Five different formulations (four containing two filler combinations) could be used for electrostatic dissipative applications and seven different formulations (six containing two filler combinations) may be used for semiconductive applications. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here