Premium
Micromechanical discrete element modeling of fiber reinforced polymer composites
Author(s) -
Khattab Ahmed,
Khattak Mohammad J.,
Fadhil Imran M.
Publication year - 2011
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.21182
Subject(s) - materials science , composite material , composite number , micromechanics , elastic modulus , modulus , molding (decorative) , transfer molding , polymer , compressive strength , fiber , mold
An analytical model of mechanical behavior of carbon fiber reinforced polymer composites using an advanced discrete element model (DEM) coupled with imaging techniques is presented in this article. The analysis focuses on composite materials molded by vacuum assisted resin transfer molding. The molded composite structure consists of eight‐harness carbon fiber fabrics and a high‐temperature polymer. The actual structure of the molded material was captured in digital images using optical microscopy. DEM was developed using the image‐based‐shape structural model to predict the composite elastic modulus, stress–strain response, and compressive strength. An experimental case study is presented to evaluate the accuracy of the developed analytical model. The results indicate that the image‐based DEM micromechanical model showed fairly accurate predictions for the elastic modulus and compressive strength. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers