Premium
Investigation of the crystalline structure of PVDF in PVDF/PMMA/graphene polymer blend nanocomposites
Author(s) -
Mohamadi S.,
SharifiSanjani N.
Publication year - 2011
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.21175
Subject(s) - materials science , masterbatch , graphene , crystallinity , nanocomposite , polymer , composite material , differential scanning calorimetry , chemical engineering , nanotechnology , physics , thermodynamics , engineering
Abstract In this work, we report the preparation of poly(vinylidene fluoride)/poly methylmethacrylate (PVDF/PMMA)/graphene polymer blend nanocomposites via synthesis of PMMA/graphene as a masterbatch through in situ polymerization. The PMMA/graphene masterbatch compounded with PVDF by solution mixing in different ratios. The compounding was followed by solution casting to form polymer blend nanocomposites. Solution cast films were subjected to thermal treatments at three different temperatures. The crystalline structure of thermally treated samples was studied with X‐ray diffraction spectroscopy and Differential Scanning Calorimetric (DSC) analysis. Results indicated PMMA chains persuade the β crystalline form in PVDF but cannot stabilize them in elevated temperature; however, graphene sheets due to restricting effect on TT conformation chains are able to stabilize them. DSC data revealed the graphene sheets can increase the crystallinity of PVDF and also act as nucleating agents. Transmission Electron Microscopy demonstrated coexistence of the different stacking orders of graphene sheets in both masterbatch and polymer blend nanocomposite. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers