Premium
A spectroscopic approach for structural characterization of polypropylene/clay nanocomposite
Author(s) -
Banerjee Saikat,
Joshi Mangala,
Ghosh Anup K.
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20998
Subject(s) - materials science , exfoliation joint , polypropylene , nanocomposite , dispersion (optics) , composite material , polymer , dielectric , intercalation (chemistry) , characterization (materials science) , nanotechnology , chemistry , inorganic chemistry , graphene , physics , optoelectronics , optics
This study focuses on the degree of dispersion and structural development of organomodified MMT clay (OMMT) during processing of polypropylene clay nanocomposites using both conventional and nonconventional characterization techniques. PP‐ g ‐MA and Cloisite 15A were melt blended with three different grades of PP separately in a micro‐twin screw compounder at selected screw speed and temperature. The clay was modified with fluorescent dyes and the adsorbed dye content in the clay gallery was estimated by using UV‐spectrophotometric method. The effects of residence time and molecular weight of the PP matrix on the clay dispersion were studied. The extent of dispersion and exfoliation of the clay in polymer matrix determined from the torque versus time data obtained from microcompounder. It was further supported by XRD, SEM, TEM, and DSC analysis. Offline dielectric and fluorescence spectrophotometric studies were also carried out. Changes in dielectric constant and dielectric loss with both frequency and temperature yielded quantitative information about the extent of clay exfoliation and intercalation in the polymer matrix. It was observed that with an increase in MFI (decrease in molecular weight) and mixing time, the extent of clay dispersion and exfoliation were also improved due to easy diffusion of polymer chains inside clay gallery. POLYM. COMPOS., 31:2007–2016, 2010. © 2010 Society of Plastics Engineers