Premium
Preparation magnetite core/coated with polystyrene shell hybrid materials via redox interfacial‐initiated emulsion polymerization
Author(s) -
Liu Weijun,
Zhang Zhicheng
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20977
Subject(s) - materials science , polystyrene , thermogravimetric analysis , magnetite , chemical engineering , nanocomposite , polymerization , emulsion polymerization , styrene , polymer chemistry , polymer , composite material , copolymer , engineering , metallurgy
In this article, we describe a novel redox interfacial‐initiated micro‐emulsion polymerization (RIEP) to prepare hollow polystyrene microspheres with magnetite nanoparticles (MPs) core and polystyrene (PS) shell (MPs‐PS) under ambient pressure. The emulsion was constituted water‐based magnetic ferro‐fluid as dispersing phase and organic solvent and styrene (St) as continuous phase. Cumene hydroperoxide (CHPO)/iron (II) sulfates (FS) as the redox initiation system, the water‐soluble FS acted as the reducing component and the oil‐soluble CHPO as the oxidant component of the redox initiation system. Therefore, the primary radicals are produced mainly at the oil/water interface to initiate the polymerization of styrene to form polymer shell. The final products thoroughly characterized by X‐ray powder diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, field‐emission scanning electron microscopy, thermogravimetric analysis, dynamic light scattering, and X‐ray photoelectron spectroscopy, which showed the formation of hollow magnetite/polystyrene nanocomposite microspheres. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer. The saturation magnetization ( M s ), remanent magnetization ( M r ) and coercivity ( H c ) is 30 emu/g, 15 emu/g and 370 Oe, respectively. The results revealed that the hybrid materials microspheres were super‐paramagnetic. POLYM. COMPOS., 31:1846–1852, 2010. © 2010 Society of Plastics Engineers