Premium
Kinetics of the phase selective localization of silica in rubber blends
Author(s) -
Le Hai Hong,
Ilisch Sybill,
Heidenreich Daniel,
Wutzler André,
Radusch HansJoachim
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20960
Subject(s) - natural rubber , wetting , materials science , composite material , styrene butadiene , phase (matter) , fourier transform infrared spectroscopy , vulcanization , silane , precipitated silica , filler (materials) , chemical engineering , styrene , polymer , organic chemistry , chemistry , copolymer , engineering
The Fourier transformed infrared (FTIR) spectroscopy on the rubber‐filler gel has been used as a tool for the quantitative characterization of the phase selective silica localization in styrene butadiene rubber (SBR)/natural rubber (NR) blends. The so‐called rubber‐layer L was introduced to describe the selective wetting behavior of the rubber phases to the filler. SBR/NR blends filled with silica were the focus of the experimental investigation. NR shows a higher wetting rate than SBR. Silane addition does not affect the wetting of NR but slowdowns the wetting of SBR. With increasing chamber temperature the value of the rubber‐layer L of all mixtures increases owing to the different thermal activated rubber‐filler bonding processes. Using the wetting concept the kinetics of silica localization in the phases of heterogeneous rubber blends was characterized. Because of the higher wetting rate of the NR component, in the first stage of mixing of NR/SBR blends more silica is found in the NR phase than in the SBR phase. In the next stage, silica is transferred from the NR phase to the SBR phase until the loosely bonded components of NR rubber‐layer are fully replaced by SBR molecules. POLYM. COMPOS., 31:1701–1711, 2010. © 2010 Society of Plastics Engineers.