Premium
Influence of modified carbon nanotube on physical properties and crystallization behavior of poly(ethylene terephthalate) nanocomposite
Author(s) -
Kim Jun Young,
Choi Hee Jun,
Kang Chang Soo,
Kim Seong Hun
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20868
Subject(s) - materials science , nanocomposite , carbon nanotube , compounding , composite material , nanotube , thermal stability , crystallization , polymer , dispersion (optics) , chemical engineering , physics , optics , engineering
Poly(ethylene terephthalate) (PET) nanocomposites reinforced with a very small quantity of modified carbon nanotube (CNT) were prepared by melt compounding using a twin‐screw extruder. The introduction of carboxylic acid groups on the surfaces of the nanotube leads to the enhanced interactions between the nanotube and the polymer matrix through hydrogen bonding formation. The thermal stability, mechanical, and rheological properties of the PET nanocomposites are strongly dependent on the interfacial interactions between the PET and the modified CNT as well as the dispersion of the modified CNT in the PET. The introduction of the nanotube can significantly influence the non‐isothermal crystallization behavior of the PET nanocomposites. This study demonstrates that a very small quantity of the modified CNT can substantially improve the thermal stability and mechanical properties of the PET nanocomposites, depending on the dispersion of the modified CNT and the interfacial interactions between the polymer matrix and the modified CNT. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers