Premium
Determination of pressure drop for concentrated suspension in a capillary flow
Author(s) -
Wang Zhi Ying,
Lam Yee Cheong,
Joshi Sunil C.,
Chen Xing
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20861
Subject(s) - materials science , suspension (topology) , capillary action , rheology , pressure drop , slip (aerodynamics) , composite material , newtonian fluid , viscosity , mechanics , thermodynamics , physics , mathematics , homotopy , pure mathematics
Abstract The rheological behavior of concentrated suspension melts in a capillary die is investigated. Particle migration and wall slip are two major factors affecting the flow behavior. A numerical model is proposed to describe the coupling effect of particle migration and wall slip in a capillary tube flow, incorporating a power‐law model for binder viscosity and a concentrated suspension viscosity model proposed by Krieger. Wall slip of a non‐Newtonian concentrated suspension is characterized by a modified Mooney method for which the conventional Mooney method is not applicable. We characterized the flow behavior of a concentrated suspension of a non‐Newtonian binder, EVA 460 (ethylene vinyl acetate), mixed with spherical glass beads of 40% by volume. Predicted results were compared with experimental observations, with good agreement. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers