Premium
Effect of processing technique on the dispersion of carbon nanotubes within polypropylene carbon nanotube‐composites and its effect on their mechanical properties
Author(s) -
Esawi Amal M.K.,
Salem Hanadi G.,
Hussein Hanady M.,
Ramadan Adham R.
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20859
Subject(s) - materials science , carbon nanotube , composite material , polypropylene , polymer , dispersion (optics) , mixing (physics) , solvent , extrusion , composite number , mechanical properties of carbon nanotubes , nanocomposite , nanotube , organic chemistry , chemistry , physics , quantum mechanics , optics
Abstract Carbon nanotube‐reinforced polymer composites are being investigated as promising new materials having enhanced physical and mechanical properties. With regards to mechanical behavior, the enhancements reported thus far by researchers are lower than the theoretical predictions. One of the key requirements to attaining enhanced behavior is a uniform dispersion of the nanotubes within the polymer matrix. Although solvent mixing has been used extensively, there are concerns that any remaining solvent within the composite may degrade its mechanical properties. In this work, a comparison is carried out between solvent and “solvent‐free” dry mixing for dispersing multiwall carbon nanotubes in polypropylene before further melt mixing by extrusion. Various weight fractions of carbon nanotubes (CNTs) are added to the polymer and their effect on the mechanical properties of the resulting composites is investigated. Enhancements in yield strength, hardness, and Young's modulus when compared with the neat polymer, processed under similar conditions, are observed. Differences in mechanical properties and strain as a function of the processing technique (solvent or dry) are also clearly noted. In addition, different trends of enhancement of mechanical properties for the solvent and dry‐mixed extrudates are observed. Dry mixing produces composites with the highest yield strength, hardness, and modulus at 0.5 wt% CNT, whereas solvent mixing produces the highest mechanical properties at CNT contents of 1 wt%. It is believed that this difference is primarily dependent on the dispersion of CNTs within the polymer matrix which is influenced by the processing technique. Field emission scanning electron microscopy analysis shows the presence of clusters in large wt% CNT samples produced by dry mixing. Samples produced by solvent mixing are found to contain homogeneously distributed CNTs at all CNT wt fractions. CNT pull‐out is observed and may explain the limited enhancement in mechanical properties. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers