Premium
Naturally compatible: Starch acetate/cellulosic fiber composites. I. Processing and properties
Author(s) -
Nättinen Kalle,
Hyvärinen Sari,
Joffe Roberts,
Wallström Lennart,
Madsen Bo
Publication year - 2010
Publication title -
polymer composites
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 82
eISSN - 1548-0569
pISSN - 0272-8397
DOI - 10.1002/pc.20833
Subject(s) - materials science , ultimate tensile strength , plasticizer , composite material , fiber , starch , composite number , scanning electron microscope , porosity , organic chemistry , chemistry
Composite compounds based on hemp and flax fibers in triethyl citrate plasticized starch acetate were prepared by melt processing. For better properties and processability, compounds with plasticizer contents in the range 20–35 wt% were screened. Composites were prepared with fiber contents up to 50 wt%. The composite mechanical properties were measured from injection molded test specimens. A Young's modulus of 8.3 GPa and stress at maximum load of 51 MPa were obtained with 40 wt% flax fiber in a plasticized starch acetate with 20 wt% triethyl citrate. Decreasing the plasticizer and increasing the fiber content, the tensile properties were consistently improved. An almost linear relation between fiber content and the tensile properties was found. The increase of the fiber content first improved the impact strength, but at higher fiber contents resulted in a reduction of impact strength. The quality of the produced materials was found to be good; the variation in properties between duplicated compounds was acceptable low, the variation in density and fiber content along a single tensile specimen was low, and finally, the porosity content was low even at high fiber content. The latter result was verified with scanning electron microscope images of fracture surfaces of the composites. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers